

ThermalTronix TT-1640CLD-DS

Long Wave Infrared Focal Plane Array

640×480 25um Uncooled Microbolometer

Issue D

Product Highlights

- a-Si microbolometer
- 640×480 focal plane array
- Pixel pitch 25um by 25um
- Hermetic Vacuum package
- Room temperature operation with TEC
- Military standard qualification

- On-chip temperature sensor
- Frame rate 25Hz \sim 50Hz
- Single or double analog output
- Frame size selectable
- Image flip controllable
- Gain control selectable

Intellisystem Technologies S.r.l.

Contents

Issue D1
Figure Lists
Glossary
1 INTRODUCTION
2 STRUCTURAL OVERVIEW
3 PERFORMANCE SPECIFICATIONS
4 ELECTRICAL INTERFACE
5 ENVIRONMENTAL CONDITIONS14
6 DELIVERY
7 APPENDIX

Intellisystem Technologies S.r.l.

Via Augusto Murri, 1 – 96100 Siracusa - Phone +39 (0)931-1756256 / +39 (0)2-87167549 - Mobile (+39) 335 1880035 em@il: info@intellisystem.it WEB: http://www.intellisystem.it

Table Lists

TABLE 1 Detector Pin List	6
TABLE 2 Bias Requirements For The TEC	7
TABLE 3 Getter Re-activation Conditions	7
TABLE 4 Operability Specification	8
TABLE 5 Operation Bias Conditions	
TABLE 6 Pulse Voltages	10
TABLE 7 Serial Link Instruction	
TABLE 8 Output Mode Control	12
TABLE 9 CTIA Gain Control	12
TABLE 12 Outputs	13
TABLE 13 Environment Conditions	14

Figure Lists

FIGURE 1 Detector Pin-out Diagram	6
FIGURE 2 Typical temperature sensor output TOUT characteristics	7
FIGURE 3 Clock Diagram	10
FIGURE 4 MCLK、 SERDAT Timing Diagram	12

Glossary

Compatible Metal Oxide Semiconductor
Capacitance Trans-Impedance Amplifier
Electrical Static Discharge
Focal Plane Array
Infrared
Long Wave Infrared
Micro-Electro-Mechanical Systems
Not Connected
Noise Equivalent Temperature Difference
Read Out Integrated Circuit
Thermo-Electric Cooler

Intellisystem Technologies S.r.l.

1 INTRODUCTION

This document describes the operation conditions and main performance specifications of an uncooled long wave infrared focal plane array detector with reference number of **TT-1640CLD-DS**.

The **TT-1640CLD-DS** infrared detector is based on CMOS-MEMS micro-bolometer technology. The detector is a 640×480 pixels array with pixel pitch of 25um by 25um. The detector is sensitive to the long-wave infrared (LWIR) spectral range of 8um \sim 14um.

The **TT-1640CLD-DS** infrared detector is vacuum packaged with an incorporated non-evaporable getter to maintain long-term vacuum. The temperature of the detector is controlled with a thermo-electric cooler (TEC). The **TT-1640CLD-DS** infrared detector is read-out row-by-row and can provide a single or a double analog output signal. The detector is typically operated under 25Hz \sim 50Hz frame rate.

2 STRUCTURAL OVERVIEW

The **TT-1640CLD-DS** detector consists of following physical structures: hermetic sealed vacuum metal packaging, an IR filter window in the front of the packaging, a non-evaporable getter inside of the packaging to help maintain long-term vacuum level, the FPA chip with an integrated temperature sensor, a thermo-electric cooler (TEC) to stabilize the detector temperature.

2.1 Overall Dimensions

The physical structure and overall dimensions of the detector packaging are described in the Appendix (sheet A to C).

2.2 Pin-out Diagram and List

The pin-out diagram is presented in Figure 1, and the function of each pin is described in Table 1.

2.3 Infrared Filter

An infrared filter window is incorporated in the front side of the detector package.

The outline size of the IR filter is 25.0mm by 23.5mm, its thickness is 1.0mm, The optical interface detail is described in the Appendix (sheet C).

Intellisystem Technologies S.r.l.

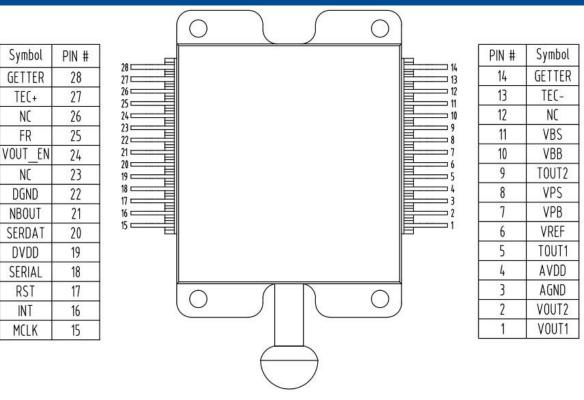


FIGURE 1 Detector Pin-out Diagram

Intellisystem Technologies S.r.l.

Pin Nr	Symbol	Function		Pin Nr	Pin Nr Symbol
1	VOUT1	Video analog output 1		15	15 MCLK
2	VOUT2	Video analog output 2		16	16 INT
3	AGND	Analog ground		17	17 RST
4	AVDD	Analog supply		18	18 SERIAL
5	TOUT1	Temperature sensor 1		19	19 DVDD
5	VREF	Reference voltage		20	20 SERDAT
7	VPB	Pixel biasing		21	21 NBOUT
3	VPS	Pixel ground		22	22 DGND
Ð	TOUT2	Temperature sensor 2		23	23 NC
10	VBB	Blind pixel biasing		24	24 VOUT_EN
11	VBS	Blind pixel supply		25	25 FR
12	NC	Not connected		26	26 NC
13	TEC-	TEC-		27	27 TEC+
14	GETTER	Getter	2	8	8 GETTER

TABLE 1 Detector Pin List

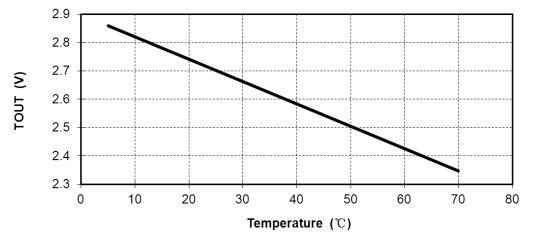
Note: the NC pins can NOT be connected to any signal bus such as the ground etc.

2.4 Thermo-Electric Cooler

TABLE 2 Bias Requirements For The TEC

Pin Nr	Symbol	Absolute Max Rating
13	TEC-	Voltage: 4.3V Current: 3.0A
27	TEC+	Power: 7.0W

The temperature stabilization is required to be 10mK.


The stabilized temperature of the detector is typically set 10K \sim 20K above the ambient temperature.

Intellisystem Technologies S.r.l.

Via Augusto Murri, 1 – 96100 Siracusa - Phone +39 (0)931-1756256 / +39 (0)2-87167549 - Mobile (+39) 335 1880035 em@il: info@intellisystem.it WEB: http://www.intellisystem.it

2.5 Temperature Sensor

Two CMOS temperature sensors are integrated in the FPA ROIC chip, and two separate analog output TOUT1 and TOUT2 are provided, the function of the two TOUT are equivalent, each one can be used to control the TEC (the other should be electrically floating, can NEVER be connected to the ground).

A typical TOUT versus the detector chip temperature relationship is shown in Figure 2. The sensitivity of the temperature sensor is about -7.85 mV/K. TOUT is about 2.70 V for an FPA temperature of 25°C.

FIGURE 2 Typical temperature sensor output TOUT characteristics

2.6 Vacuum and Getter

The **TT-1640CLD-DS** detector is required to operate under high vacuum condition. A non-evaporable getter is integrated in the packaging to maintain the long-term vacuum level. The getter can be electrically re-activated when the performance of the detector is degraded due to the vacuum level degradation. The getter activation is performed by supplying a constant current to the two pins of the getter as shown in Table 3. Re-active the getter by the customer is not recommended.

TABLE 3 Getter Re-activation Conditions

Pin Nr	Symbol	Current	Time
14/28	Getter	2.0A±0.1A	10min

Intellisystem Technologies S.r.l.

2.7 Weight

The total weight of the TT-1640CLD-DS detector is less than 20g.

2.8 Operating Temperature

The operating temperature range of the **TT-1640CLD-DS** detector is from -40° C to $+60^{\circ}$ C. A heat sink condition with typical thermal resistance of 4K/W is required between the packaging base plate and the ambient, especially when the detector is operated at the high end of the temperature range.

2.9 Storage Temperature

The storage temperature range of the **TT-1640CLD-DS** detector is from -40°C to +85°C.

3 PERFORMANCE SPECIFICATIONS

A detector test report is provided with each delivered detector by the manufacturer which contains testing results of the responsivity, temporal NETD and operability.

The definitions of several parameters are further explained as following.

3.1 Responsivity

The detector responsivity is not a fixed performance specification parameter, the value supplied the test report is a measured value under the certain biasing and test conditions.

- 3.2 Operability specification
- 3. 2. 1 Non-operating pixel

A pixel is defined as a "non-operating" if:

- its responsivity is less than 0.8x average responsivity or larger than 1.2x average responsivity;
- its NETD is larger than 1.5x average NETD;
- 3. 2. 2 Non-operating Row

A row is considered as non-operating if larger than 50% of the pixels are non-operating.

3. 2. 3 Non-operating Column

A column is considered as non-operating if larger than 50% of the pixels are non-operating.

3. 2. 4 Operability Specification

The operability of the delivered detector should meet the requirement in Table 4.

Intellisystem Technologies S.r.l.

TABLE 4 Operability Specifications

Non-operating row or column	0
Non-operating pixels	≤1%
Operability	≥99%

4 ELECTRICAL INTERFACE

4.1 Operation Bias Voltages

To properly operate the **TT-1640CLD-DS** detector, various bias voltages should be supplied to each pin as specified in Table 5.

Pin Nr	Symbol	Bias Type		ymbol Bias Ty		Optimum Value	Range	Max Current	Max RMS Noise
3	AGND	Input	Fixed	0V	_	60mA	_		
4	AVDD	Input	Fixed	5V±100mV	_	60mA	2uV(1Hz~1KHz) 5uV(1Hz~10KHz) 100uV(1Hz~10MHz)		
6	VREF	Input	Fixed	2.4V±25mV	_	1mA	<100uV		
7	VPB	Input	Tunable	Given in the test report	2V~5V	100uA	2uV(1Hz~1KHz) 5uV(1Hz~10KHz) 100uV(1Hz~10MHz)		
8	VPS	Input	Fixed	0V	_	5mA	-		
10	VBB	Input	Fixed	1.7V	_	100uA	2uV(1Hz~1KHz) 5uV(1Hz~10KHz) 100uV(1Hz~10MHz)		
11	VBS	Input	Tunable	Given in the test report	2V~5V	5mA	2uV(1Hz~1KHz) 5uV(1Hz~10KHz) 100uV(1Hz~10MHz)		
19	DVDD	Input	Fixed	5V±300mV	_	10mA	<100mV		
22	DGND	Input	Fixed	0V	_	10mA	_		

TABLE 5 Operation Bias Conditions

 $\mathsf{VPB}_{\mathsf{v}}$ VBS can be adjusted to optimize the detector performance within the above range

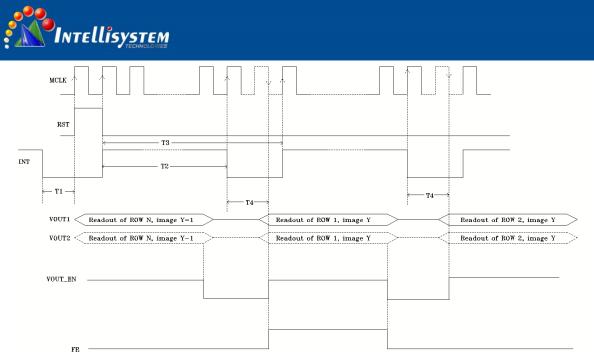
Note : Special Requirements for Supplying the Bias Voltages (the detector could severely damage if the following instructions are not followed):

Intellisystem Technologies S.r.l.

Via Augusto Murri, 1 – 96100 Siracusa - Phone +39 (0)931-1756256 / +39 (0)2-87167549 - Mobile (+39) 335 1880035 em@il: info@intellisystem.it WEB: http://www.intellisystem.it

1) When supply the bias voltages , it is required that the VPB is supplied last, when all the other signals and bias

have been supplied and stabilized;


- 2) When power off the detector, it is required that the VPB is turned off first, all the other signals and bias voltage can be turned off only after the VPB has been off;
- 3) If need to change SERDAT input to achieve serial link control then the detector is actively biased, it is required to turn the VPB signal off firstly, then change SERDAT, and turn on the VPB again.

4.2 Pulse Voltage and Clock Diagram

Pin	Cumb al	Pulse Type			Low Level			High Level	
Nr	Symbol	Puis	етуре	Min	Typical	Max	Min	Typical	Max
15	MCLK	Input	5V TTL	-0.3V	0V	0.3V	4.7V	5V	5.5V
16	INT	Input	5V TTL	-0.3V	0V	0.3V	4.7V	5V	5.5V
17	RST	Input	5V TTL	-0.3V	0V	0.3V	4.7V	5V	5.5V
20	SERDAT	Input	5V TTL	-0.3V	0V	0.3V	4.7V	5V	5.5V

TABLE 6 Pulse Voltages

Intellisystem Technologies S.r.l.

T1>15TMCLK, 15TMCLK<T2(Integration time)<640 TMCLK, T3>(640+17)TMCLK, T4=18.5TMCLK

FIGURE 3 Clock Diagram for 640×480 Configuration

4.3 Serial Control

The serial control bus is developed for infrared imagers. The serial link (SERDAT: PIN #20) is used to write the required user data. And SERIAL (PIN #18) commands the serial link (SERDAT).

4.3.1 SERIAL

4.3.1.1 SERIAL=OV

When SERIAL=OV, SERDAT is off , only NBOUT (PIN #21) is available.

- a) When NBOUT=0V, double analog output: VOUT1 and VOUT2;
- b) When NBOUT=5V, single analog output: only VOUT1;
- c) CTIA capacitance is fixed to 18pF.

4.3.1.2 SERIAL=5V

When SERIAL=5V, SERDAT is available, and NBOUT (PIN #21) is off.

- a) When SERDAT=0V, only VOUT1 single analog output, CTIA capacitance is fixed to 18pF;
- b) When SERDAT is defined by 4.3.2, all the functions given by the serial link are available.
- 4. 3. 2 Serial Control Bus

SERDAT (PIN #20) is a 51 bits control signal defined as in Table 7. The main feature of the serial interface

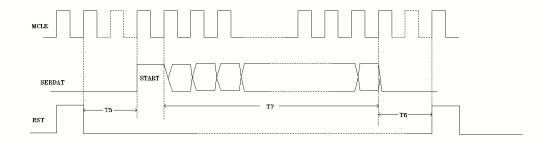
include:

a) Single analog output or double analog output: NBOUT

Intellisystem Technologies S.r.l.

Via Augusto Murri, 1 – 96100 Siracusa - Phone +39 (0)931-1756256 / +39 (0)2-87167549 - Mobile (+39) 335 1880035 em@il: info@intellisystem.it WEB: http://www.intellisystem.it

- b) CTIA gain value: GAIN
- c) Image flip: HFLIP $\$ VFLIP
- d) Windowing: SIZEA、SIZEB


SERDAT can be applied by each frame or just once.

To activate the serial control bus, the first bit named START needs to be set at "1" i.e high level.

The clock frequency of SERDAT is governed by the Master Clock (MCLK). Data will be taken into account if START bit is at high level. Data must change during rising edge of MCLK and will be taken into account at the falling edge of the next RST. The timing diagram of SERDAT is shown in Figure 4.

	Length		Format		Example	
Position	(in bit number)	Name	Name (binary/decimal) V		Binary conversion	
1	1	START	binary	1	1	
2	1	Reserved	binary	0	0	
3	3	Reserved	binary	0,0,0	000	
4	1	NBOUT	binary	1	1	
5	3	GAIN	binary	1,1,1	111	
6	1	HFLIP	binary	1	1	
7	1	VFLIP	binary	1	1	
8	1	SIZE-A	binary	1	1	
9	1	SIZE-B	binary	0	0	
10	9	Y _{first}	Decimal	320	101000000	
11	9	Y _{last}	Decimal	160	010100000	
12	10	X _{first}	Decimal	160	0010100000	
13	10	X _{last}	Decimal	320	0101000000	

TABLE 7 Serial Link Instruction

T5≥1TMCLK, T6≥1TMCLK, T7=50TMCLK

FIGURE 4 SERDAT Timing Diagram

4. 3. 2. 1 NBOUT

The following table gives the output mode versus NBOUT value.

Intellisystem Technologies S.r.l.

TABLE 8 Output Mode Control

NBOUT	Output mode
1	Single-end (by default)
0	Double-end

4. 3. 2. 2 Gain Control

The GAIN enable CTIA gain adaptation for specific operating conditions. The different avilable configurations are as following:

Gain	Value	CTIA Capacitance(pF)
1.00	111	18
1.125	011	16
1.29	101	14
1.50	001	12
1.80	110	10
2.25	010	8
3.00	100	6
4.50	000	4

TABLE 9 CTIA Gain Control

4. 3. 2. 3 Image Flip

The image could be flipped in horizontal and vertical direction using HFLIP and VFLIP input, as described in Table 10.

Scanning Direction	HFLIP	VFLIP
right→left/up→down	1	1
right→left/down→up	1	0
left→right/up→down	0	1
left→right/down→up	0	0

4. 3. 2. 4 Windowing

Three different windows of interest are available: 648×488, 640×480 and 384×288 with the same optical center plus a user defined window determined by 2 opposite corner coordinates. The selection of the size is made by the serial link. The following table gives the size format versus the SIZEA and SIZEB values:

The user defined window need abide bellow rule(X-Y): Column defination: $160 \le X \le 648$; Row defination: $1 \le Y \le 488$.

Intellisystem Technologies S.r.l.

Via Augusto Murri, 1 – 96100 Siracusa - Phone +39 (0)931-1756256 / +39 (0)2-87167549 - Mobile (+39) 335 1880035 em@il: info@intellisystem.it WEB: http://www.intellisystem.it

TABLE 11 Format Size Control

FORMAT	SIZEA	SIZEB
648×488	1	1
640×480	1	0
384×288	0	1
User Defined	0	0

4.4 Output Characteristics

The detector contains two type of outputs. VOUT1 and VOUT2 are the analog video output, TOUT1 and TOUT2 are the temperature sensor output. The outputs are described in Table 12.

TABLE 10 Outputs

Pin Nr	Symbol	Output Type		Range
1	VOUT1	Output	variable	0.4V~4.0V
2	VOUT2	Output	variable	0.4V~4.0V
5	TOUT1	Output	variable	2.0V~3.3V
9	TOUT2	Output	variable	2.0V~3.3V

5 ENVIRONMENTAL CONDITIONS

TT-1640CLD-DS detector is GJB-qualified (MIL-STD equivalent). The detector qualification is performed on the basis of sampling from the manufactured products and is representative of the typical manufacturing technology level. The detector should be qualified to the climatic and mechanical environmental conditions as listed in Table 13.

Intellisystem Technologies S.r.l.

Via Augusto Murri, 1 – 96100 Siracusa - Phone +39 (0)931-1756256 / +39 (0)2-87167549 - Mobile (+39) 335 1880035 em@il: info@intellisystem.it WEB: http://www.intellisystem.it

TABLE 11 Environment Conditions

Nr	ltem	Standard and Method
1	High temperature storage	GJB 1788 Method 2020
2	Low temperature storage	GJB 1788 Method 2040
3	Thermal Shocks	GJB 1788 Method 2010
4	Random vibration	GJB 1788 Method 2080
5	Shocks	GJB 1788 Method 2070

6 **DELIVERY**

6.1 Packing

During transportation, the detector is placed into a plastic box and wedged with conductive foam, a testing report is delivered together with each detector.

6.2 Storage

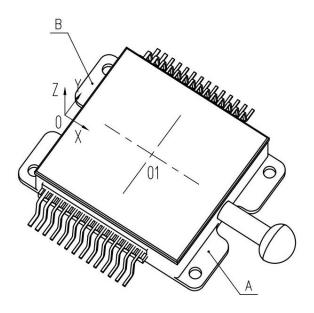
Detectors should be stored at conditions: temperature at -10°C \sim 40°C, relative humidity is less than 70%, dry and non-corrosive environment.

6.3 General Recommendations

Specific care should be taken in handling the **TT-1640CLD-DS** detector:

- a) Electrostatic discharge (ESD) protection
- b) Avoid directing the detector directly towards the sun, especially in the case the detector is mounted with a lens

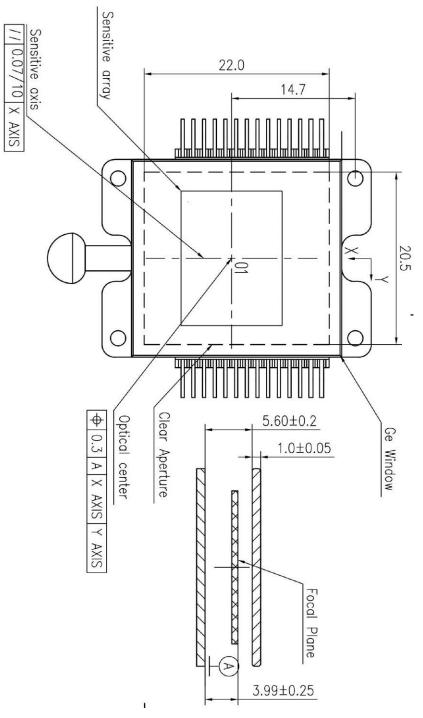
7 APPENDIX


- a) Sheet A: General View
- b) Sheet B: Mechanical Interface
- c) Sheet C: Optical Interfa

Intellisystem Technologies S.r.l.

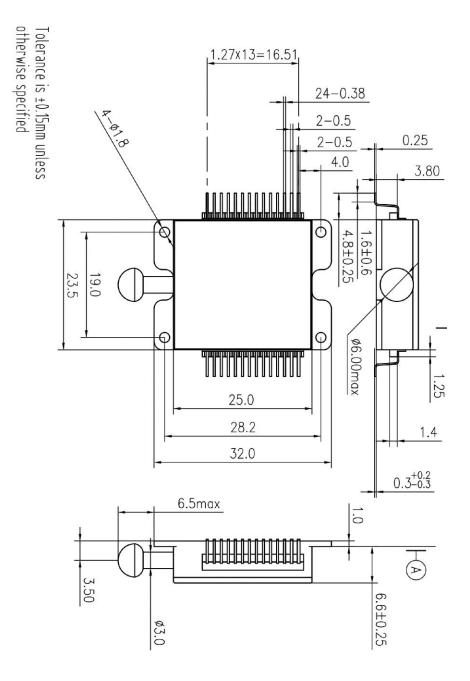
Via Augusto Murri, 1 – 96100 Siracusa - Phone +39 (0)931-1756256 / +39 (0)2-87167549 - Mobile (+39) 335 1880035 em@il: info@intellisystem.it WEB: http://www.intellisystem.it

Sheet A General View


NOTE:

- 1-Mechanical reference OXYZ are materialised by: XY: Mechanical Mounting surface (A plane) X: Symmetry axis of the structure Y: Perpendicular to X axis through line B
- Z: Normal to XY plane O: XYZ axis center
- 2-01: Optical plane center

Intellisystem Technologies S.r.l.


Sheet B Mechanical Interface

Intellisystem Technologies S.r.l.

Sheet C Optical Interface

Intellisystem Technologies S.r.l.

Via Augusto Murri, 1 – 96100 Siracusa - Phone +39 (0)931-1756256 / +39 (0)2-87167549 - Mobile (+39) 335 1880035 em@il: info@intellisystem.it WEB: http://www.intellisystem.it